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ABSTRACT
As a case of space–time interaction, near-repeat calculation 
indicates that when an event takes place at a certain location, its 
immediate geographical surroundings would face an increased risk 
of experiencing subsequent events within a fairly short period of time. 
This paper presents an exploratory study that extends the investigation 
of the near-repeat phenomena to a series of space–time interaction, 
namely event chain calculation. Existing near-repeat tools can only 
deal with a limited amount of data due to computation constraints, let 
alone the event chain analysis. By deploying the modern accelerator 
technology and hybrid computer systems, this study demonstrates 
that large-scale near-repeat calculation or event chain analysis can be 
partially resolved through high-performance computing solutions to 
advance such a challenging statistical problem in both spatial analysis 
and crime geography.

1.  Introduction

There is a growing consensus that the spatial and temporal dimensions of the data should 
be handled jointly instead of treated independently (Andrienko et al., 2010; Anselin, 2012; 
Goodchild, 2009; Goodchild & Janelle, 2004). Ignoring these interdependence leads to the 
overlooking of many possible interactions and might cause biases in the analytical results 
(Ye & Rey, 2013). Researchers thus have to consider modelling approaches that effectively 
integrate spatial and temporal aspects of the data (Andrienko & Andrienko, 2013). Near-
repeat is a special phenomenon conceptualized based on possible linkages in the spatial 
and temporal dimensions of events. It means that after an event occurs at a certain location, 
its immediate surroundings would face an increased risk of experiencing subsequent events 
within a fairly short period of time (Ratcliffe & Rengert, 2008; Wells, Wu, & Ye, 2011). This 
statistical analysis can be considered as a before-and-after analysis of a specific type of event 
in any specific location and its locale. The assumption is that the space–time pattern of such 
events at any location and its vicinity is random before an incident occurs. After an incident, 
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a spatial cluster of follow-up events is expected physically close to the target of the initial 
incident (Henriksen, Mattick, & Fisher, 2016). The conclusion derived from near-repeat is 
policy-relevant in the spatial crime research, because it can suggest interventions that might 
prevent possible subsequent crimes. For example, the police department could adjust patrol 
activities according to the risk level (Ye & Liu, 2012). Evidence of repeat and near-repeat 
phenomena has primarily been observed on burglaries (Johnson, Summers, & Pease, 2009; 
Townsley, Homel, & Chaseling, 2000). Researchers also investigated gun violence (Ratcliffe 
& Rengert, 2008; Wells et al., 2011).

Developed by Ratcliffe and Rengert (2008), the near-repeat calculator was implemented 
to identify whether significant space–time clustering exists among a group of events. This 
software adopts a revised Knox test (Knox & Bartlett, 1964) and Monte Carlo simulation to 
examine such spatio-temporal phenomenon. The revised Knox test divides events into sub-
groups by certain geographical distance and time interval. Each event pair can be put into 
one of the subgroups based on how far it is away from the focal event in space and over 
time. Except for the last group in space or time, all of the bands have the same bandwidth 
of spatial distance and time interval (Ratcliffe & Rengert, 2008; Wells et al., 2011). To calculate 
the statistical significance of the observed value, a Monte Carlo simulation is designed to 
randomly shuffle the times of events. During the period of the simulations, the X, Y coordi-
nates of the events remain the same, while the timing of event is re-arranged among all 
timing points (Ratcliffe & Rengert, 2008). In order to generate a relatively stable statistical 
significance, 999 simulations are carried out. Near-repeat calculation is a time-consuming 
procedure because N incidents will derive N × (N − 1)/2 pairs of events at each single run of 
calculation, while additional 999 simulations would repeat the same process to get the 
pseudo statistical significance. Hence, the calculation easily goes beyond the capacity of 
Ratcliffe’s Near-repeat Calculator that would spend more time, or would fail due to memory 
leak on the desktop computer.

Ye and Shi (2013) reported the result of a pilot study that deployed the modern accelerator 
technology and hybrid computer architecture and systems to extend Near-repeat calculation 
based on high-performance computing. The prior report (Ye & Shi, 2013), however, did not 
provide details about how near-repeat algorithm was implemented on the graphics pro-
cessing unit (GPU) to calculate the two-event pair. Furthermore, it had nothing about the 
extended calculation of multi-event chain. This paper provides the details about how near-re-
peat algorithm is implemented on a GPU and a cluster of GPUs to calculate the two-event 
pairs and how multi-event chain calculation is conducted on a conventional computer 
cluster.

This research focuses on solving the computation challenge emerging from the near-repeat 
calculation along with the permutation procedures, which will serve as the solid foundation 
for further space–time crime analysis with other covariates and contextual information (Shi, 
Lai, Huang, & You, 2014; Ye & Shi, 2013). Furthermore, exploratory solutions have been 
developed to resolve the event chain calculation over big data-sets. Through a pilot study on 
a sample data of 32,505 events, we apply a single GPU on a desktop machine to accomplish 
the two-event pair calculation (N × (N − 1)/2 pairs) and permutation in about 48.5 min. When 
100 GPUs on supercomputer Keeneland are used, we accomplish the calculation and 
permutation in about 4 min. Furthermore, we utilize supercomputer Kraken to explore feasible 
solutions that can process multiple event pair calculation. Considering the significance of 
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near-repeat and event chain calculation, developing the capability to process a large-scale 
event data in an affordable time frame is critical to advance the spatial and crime analysis.

2.  Research context

The availability of big geo-referenced event data-sets along with the high-performance 
computing technology has provided enormous opportunities to mainstream social science 
research on whether and how these new trends in data and technology can be utilized to 
help detect the trends and patterns in the socio-economic dynamics. Analysing big event 
data requires an innovative design of algorithms and computing resources. The solutions 
to these research challenges may facilitate a paradigm shift in many social sciences disci-
plines. For instance, detecting spatio-temporal dynamics of violence efficiently within a 
reasonable time frame can lead to more effective police patrol deployments and can be 
used to evaluate policing strategies, because limited policing resource can be directed to 
the concentration of shooting events (Zeoli, Pizarro, Grady, & Melde, 2014).

Near-repeat calculation only considers space–time interaction among every two incidents 
(Gu, Wang, & Yi, 2017; Wells et al., 2011). For example, if three incidents form a near-repeat 
pattern for each two, three near-repeat event pairs can be identified, such as incident A and 
incident B, incident B and incident C, incident A and incident C. In this case, a space–time 
event chain involving incident A, incident B, and incident C is more appropriate to differen-
tiate such a scenario from three separate space–time pairs (Townsley, 2007). In other words, 
it would be more meaningful to identify the concentration of multiple incidents than each 
two incidents. This study suggests integrating the merits of near-repeats (space–time inter-
action) and hot spot (Emeno, 2014). Nevertheless, when the scale of shooting events goes 
from three to more, the computation challenge emerges. A method for assessing space–time 
chain has three parameters: spatial band, temporal band and the number of the incidents 
(at least three incidents). Event chain analysis improves our understanding of the role of 
space and time among a series of shooting events.

The Near-repeat calculator is a desktop-based software program, providing a convenient 
way to quantitatively measure the risk levels in near-repeat phenomena. The output is a 
matrix of space time distances. The program adopts a Monte Carlo simulation process to 
test the event patterns. However, when the size of events reaches 10,000 or more paired 
events calculation with 999 simulations, it will collapse at a desktop computer with Intel 
Core i7 (3.4 GHz) Quad Core Processor and 8 GB DDR3 RAM. This exploratory study utilizes 
both Graphics Processing Units (GPUs) on supercomputer Keeneland to complete the 
near-repeat calculation.

Today’s GPUs are designed as general purpose parallel processor with support of acces-
sible programming interfaces and standard programming languages. Keeneland was a 
powerful hybrid system sponsored by NSF (Vetter et al., 2011). Keeneland was composed 
of an HP SL-390 (Ariston) cluster with Intel Westmere hex-core CPUs, NVIDIA Fermi GPUs and 
a Qlogic QDR InfiniBand interconnect. The system has 120 nodes with 240 CPUs and 360 
GPUs. Each node has 2 Westmere hex-core CPUs, while each CPU has 67 GFLOPS of comput-
ing power and three GPUs. Each GPU can generate 515 GFLOPS of computing power. Every 
4 nodes are placed in the HP S6500 Chassis and every 6 Chassis is placed in a rack. In total, 
7 racks are included in the Keeneland system. The Keeneland full-scale system was added 
to the XSEDE in July 2012 and decommissioned in 2014.
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The near-repeat has two kinds of calculation. Firstly, we need to derive all two-event pairs 
from the input source data, which contains the space (x, y coordinates in a certain projection) 
and time (t) information for each event (exemplified in Table 1). The output result is a table 
of a given number of rows and columns. In our use case, it is a 5 × 5 table (exemplified in 
Table 2). Any two events that are within a given distance in space and a given interval of 
time (i.e. 500 meters and 30 min in this study) will be placed into a corresponding cell in the 
table. For 100 events, the total number of two-event pair is 100 × 99/2 = 4950, which is 
exactly the sum of the numbers in the 5 × 5 output result.

In a serial computer program, we can write for-loops to do such calculation for each event. 
Once a result is derived, the value in a given cell of the output table will be re-counted and 
updated. In parallel computing, we may use hundreds or thousands of concurrent threads 
to do the calculation. However, the result cannot be updated in the output table concurrently 
because at a given time stamp, each table cell can only have one value.

For this reason, our solution is a combination of parallel program and serial program to 
complete this task. Instead of writing the output result directly into the 5 × 5 table, we need 
a new data structure to store the intermediate result derived in parallel computing. For a 
given number of n events, we create a table [let’s call it as all-event pair table] to store the 
output result of two-event chains. This table has n x n cells and each cell is assigned a value 
[or “label” in the code segment] in correspondence to each cell in the 5 × 5 table [let’s call it 
as matrix table].

To create the all-event pair table in parallel, we write a GPU program in which, each thread 
will generate the output for one row in this n × n all-event pair table. Table 3 displays the code 
segment:

Each cell in the output all-event pair table is labelled by number between the value of “1” 
and “25”. A serial program will count the number of each label within the all-event pair table 
and write the total number into the 5 × 5 matrix table.

Secondly, the remaining calculation tasks in the near-repeat test are different from the 
first step, but are all about permutation and combination in order to derive the results of 
three-event chains, four-event chains and so on.

Such multiple event chain calculation is computing intensive. Given N number events, 
Table 4 describes the computation intensity (number of calculation in theory):

Obviously such kind of computation cannot be accomplished on a desktop computer. 
Even on supercomputers, it is difficult to implement a brute force algorithm to resolve the 
problem. In the case of petaflop [1015 floating point operations] calculation per second, 
when N = 30,000, 5-event chain has to be done in 200,000 s [about 56 h].

For this reason, we need to identify appropriate solutions to calculate 3 or more event 
chains. In this case, instead of generating one all-event pair table containing all two-event 
chains with different labeled numbers, we create 25 tables [let’s call it as individual-event 
pair table]. Each individual-event pair table has n × n cells and each individual-event pair table 

Table 1. Example of input source data.

x y t

12,723,025 3,571,087 38,966
12,725,670 3,572,824 38,635
…… …… ……
12,723,571 3,573,746 38,627
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is a representation of a corresponding cell in the 5 × 5 table [i.e. matrix table]. However, each 
individual-event pair table only has either 0 or 1 in the cell. That is to say, if two events are 
within a certain distance in space and a certain time interval, it has a value of 1 [true] in a 
corresponding individual-event pair table, otherwise 0 [false].

When we target each individual-event pair table, we can find the regulation to calculate 
3 and more event chains and design the parallel solution to conquer such computation 
problems of petascale or beyond.

Supposed we have 20 events and one of the individual-event pair tables is captured and 
illustrated as Figure 1. Only the black cells have the value of 1, while all others have the value 
of 0. We use different colours [orange and white] to represent the asymmetric distribution 
of the two-event chains in this table.

How can we know how many three-event chains are linked to a given event? Let’s start 
from the first event. We can find the regulation based on each row. For each row in this 
individual-event pair table, we first delete all columns whose cell value is 0. Second, we 
delete the corresponding rows in this individual-event pair table. The table below is the 
result for the first event [row 1]. It means the first event has two-event chain with those 
remaining events in the first row [colour changed to blue, value is 1]. Thus, the number of 
three events can be found by only counting the number of black boxes [value is 1], which 

Table 2. Example of a 5 × 5 near-repeat output table.

1 11 1 3 3
2 236 248 154 209
2 275 244 183 367
1 255 255 215 340
3 455 440 387 660

Table 3. GPU program code segment for creating the all-event pair table in parallel.

__global__ void crimeCuda(float* xAxis_d, float* yAxis_d, float* time_d, int* label_d, int* timeSlots_d, int* distanc-
eSlots_d, int dataNum, int timeNum, int distanceNum){

  int idx = blockIdx.x * blockDim.x + threadIdx.x;
  if(idx < dataNum){
    for(int i = 0; i < dataNum; i ++){
      if(i != idx){
        label_d[idx * dataNum + i] =assignLabel(xAxis_d[idx], 
yAxis_d[idx], time_d[idx], xAxis_d[i], yAxis_d[i],
          time_d[i], timeSlots_d, distanceSlots_d, timeNum, 
distanceNum);
      }
    }
  }
}

Table 4. Computational intensity for varying number of chains.

Chain number Formula N = 100 N = 30,000
2-event chain N × (N − 1)/(2 × 1) 4950 449,985,000
3-event chain N × (N − 1) × (N − 2)/(3 × 2 × 1) 161,700 4.5 × 1012

4-event chain N × (N − 1) × (N − 2) × (N − 3)/(4 × 3 × 2 × 1) 3,921,225 3.4 × 1016

5-event chain N × (N − 1) × (N − 2) × (N − 3) × (N − 4)/(5 × 4 × 3 × 2 × 1) 75,287,520 2.0 × 1020
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means these two events are chained together when they both chained with the first event 
(Figure 2).

Given another example for the three-event chains that are associated with the fourth 
event, for each row in this individual-event pair table starting from the fourth event, we first 
delete all columns whose cell value is 0. Second, we delete the corresponding rows in this 
individual-event pair table. The table below is the result for the fourth event [row 1]. It means 
the fourth event has two-event chain with those remaining events in the first row [colour 
changed to blue, value is 1]. Thus, the number of three events can be found by counting the 
number of black boxes [value is 1], which means these two events are chained together 
when they both chained with the fourth event (Figure 3).

For the remaining event chain calculations that have four-event chain or multiple event 
chains, we found the regulation as: if more than three events are chained together, they will 
display a regular pattern as in Figure 4 (subset derived from Figure 1).

This means the sum of this subset matrix is n × (n − 1)/2! Thus, we derive the parallel 
algorithm for multiple event chains that contain more than three events as follows.

Figure 1. One individual-event pair table for a 20 event use case.
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For each cell in the 5 × 5 table [i.e. main matrix table]:

(1) � Since N number of event chains is derived from the result of N − 1 number of event 
chains, when writing the output of N − 1 number of event chains, a list of unique 
event IDs associated with this output must be declared and stored. This filter will 
reduce a significant amount of calculation since those being filtered out have no 
chance to appear in N number of event chains.

(2) � Furthermore, when writing the output of N − 1 number of event chains, for each 
unique event identified in step 1, a list of other unique event IDs associated with 
this specific event must be declared and stored. This filter will reduce a significant 
amount of calculations since those being filtered out have no relation to this specific 
event in the calculations of N number of event chains.

(3) � Based on the result in step 1, we will create a job queue for task partition in parallel 
computing. For each unique event, generate a list of N event combination based on 

Figure 2. Three-event chains that are associated with the first event.

D
ow

nl
oa

de
d 

by
 [

B
ou

rn
em

ou
th

 U
ni

ve
rs

ity
] 

at
 0

0:
04

 1
9 

D
ec

em
be

r 
20

17
 



www.manaraa.com

8   ﻿ X. YE ET AL.

Figure 3. Three-event chains that are associated with the fourth event.

Figure 4. Regular patterns shown with a higher number of chains.
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the other unique event IDs associated with this specific event derived from step 2, if 
the number of total events is equal to or greater than N. The list for each unique event 
will be merged as a single list as the jog queue in order to resolve the unbalanced 
workload issue in the calculation within such an asymmetric matrix.

(4) � Based on the result [job queue] in step 3, for each job [i.e. a combination of N event], 
create a subset matrix from the corresponding individual-event pair table by using 
the unique IDs listed in the job queue derived in step 3. Calculate the sum of this 
subset matrix. If the sum equals to n × (n − 1)/2, then this subset of matrix has N 
event chain, otherwise the result is false.

(5) � Write the output result by repeating step 1 through 5 until all possible event chains 
are identified.

3.  Result

3.1.  Two-event pair calculation over supercomputer Keeneland

Near-repeat calculation for two event pairs over a sample data-set with 32,505 records is 
implemented on a desktop GPU and supercomputer Keeneland. When the near-repeat cal-
culation is parallelized for calculating two event chains over desktop GPU, while a duplication 
of the paired values occurs on the GPU side, the duplicated pairs can be eliminated during 
the integration process on the CPU side. It takes about 48.5 min to complete the entire 
calculation and simulation processes for a 1000 runs. Furthermore, the near-repeat calcula-
tion was implemented on the Keeneland. Through a combination of MPI and GPU programs, 
we can dispatch the simulation work onto multiple nodes in Keeneland to accelerate the 
simulation process. MPI programs are developed to handle 100 GPUs on Keeneland to com-
plete 1000 simulations in about 264 s.

For 32,505 events, the total number of two-event pairs is 32,505 × 32,504/2 = 528,271,2
60, which is exactly the sum of the numbers in the 5 × 5 table (Table 5) derived from the 
hybrid CUDA and GPU program over Keeneland. Each cell in the table presents the number 
of the two-event pairs marked by the cell index.

3.2.  Multiple-event chain calculation over supercomputer Kraken

While we propose two levels of filters in the prior section, we apply only one filter initially 
when calculating the three-event chain. That is to say, we use all unique events to generate 
the combination of possible events as the job queue. Furthermore, we utilize supercomputer 
Kraken to implement multiple event chain calculation. Supercomputer Kraken is a Cray XT5 
system consists of 9,408 compute nodes with 112,896 compute cores, 147 terabytes of 
memory and 3.3 petabytes storage. Each compute node contains 12 AMD 2.6 GHz Istanbul 
compute cores and 16 GB memory. Kraken is the first supercomputer in academia that 

Table 5. Two-event pair calculation result.

902 [0] 19,118 [5] 10,962 [10] 5764 [15] 10,960 [20]
89,430 [1] 10,616,749 [6] 7,096,991 [11] 4,012,736 [16] 7,903,840 [21]
201,122 [2] 24,758,642 [7] 16,575,721 [12] 9,512,489 [17] 18,520,012 [22]
254,539 [3] 31,528,334 [8] 21,104,195 [13] 12,077,044 [18] 23,365,331 [23]
979,689 [4] 121,121,618 [9] 81,166,971 [14] 46,248,867 [19] 91,089,234 [24]
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achieves petaflop [1015 floating point operations]. When we use 120 cores on Kraken to 
process 100 event sample data, the calculation [1/25 of the main matrix table] on the longest 
event chain [i.e. 8-event chain] is accomplished in 0.7 s and the result is the same as that 
from Python program running for 12 h. The same solution was OK with three-event-chain 
calculation over the 32,505 records. When an average of 2400 processors on Kraken were 
utilized for each cell in the 5 × 5 table, three-event-chain calculation can be done mostly 
within about 30 min based on the result of above two-event pairs. If we use a single CPU to 
do the calculation, it needs 25 × 2400 × 30 = 1,800,000 min or 30,000 h or 1250 days to 
complete the work.

Table 6 describes the result of the prior work that has successfully completed the calcu-
lations of the three event chains. If the number of two-event pairs is greater than 100,000, 
it will result in a scale of 1013 calculations to derive three event chains. It also displays a part 
of the cells in the 5 × 5 table that have the needs to calculate the potential four-event chains. 
Since the unique events numbers to be used to calculate four event chains have been iden-
tified, the estimated number of calculations reveals that most of the four event chain calcu-
lation will be at a scale of 1016.

Several initial results on multiple event chain calculation are accomplished. For the first 
cell indexed by 0, a maximum number of 9 events can be chained together. 4800 processors 
were used to complete the task in 130.69 s. Starting from 902 two event pairs, there are 162 
three-event chains, 137 four-event chains, 127 five-event chains, 84 six-event chains, 36 
seven-event chains, 9 eight-event chains and 1 nine-event chain. For the cell indexed 20 in 
the above 5 × 5 table, 2400 processors have been used to complete the all event chain 
calculation in 110.01 s. A maximum number of 4 events can be chained together. Based on 
10,960 two-event pairs, there are 6018 three-event chains and 1688 four-event chains.

For the cell indexed five in the above 5 × 5 table, 4800 processors have been used to 
complete a partial work for the multiple chain calculation in more than 10 h. Starting from 
19,118 two-event pairs, there are 107,160 three-event chains, 1,009,866 four-event chains 
and 9,058,084 five-event chains. There are 1992 unique event IDs that are involved in the 
calculation for the potential six-event chains. In this case, if only one level of filter is applied, 
then 1016 calculations would be involved and beyond our allocation limit on Kraken. For this 

Table 6. Three- and Four-event chain calculation result.

ID in 5 × 5 table

Pair number 
in three event 

chains Start time End time Time used

Unique events 
in 4 event 

chain
Estimated 

calculations
0 162 01:35:22 02:04:01 0:28:39 170 3.36E+07
1 167,352 02:04:38 02:32:20 0:27:42 23,984 1.38E+16
2 335,568 02:32:49 02:59:42 0:26:53 26,645 2.10E+16
3 284,600 03:07:10 03:35:05 0:27:55 27,871 2.51E+16
4 14,643,984 05:05:54 05:35:14 0:29:20 31,576 4.14E+16
5 107,160 05:36:26 06:03:03 0:26:37 4352 1.49E+13
6 1,897,464,639 06:05:08 06:34:26 0:29:18 32,306 4.54E+16
7 4,147,853,641 06:19:54 06:50:30 0:30:36 32,326 4.55E+16
8 3,612,469,509 06:47:06 07:16:08 0:29:02 32,243 4.50E+16
9 183,759,055,736 06:51:10 07:19:35 0:28:25 32,476 4.63E+16
20 6018 08:35:23 09:01:35 0:26:12 1688 6.05E+10
21 316,239,815 08:49:58 09:18:53 0:28:55 32,466 4.63E+16
22 761,491,797 08:50:47 09:18:21 0:27:34 32,404 4.59E+16
23 633,774,016 08:57:52 09:31:16 0:33:24 32,390 4.59E+16
24 35,091,135,040 08:58:56 09:31:01 0:32:05 32,505 4.65E+16
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reason, we plan to apply the second filter to improve the solution. As a result, it is expected 
that the calculations could be reduced appropriately. Unfortunately Kraken has been decom-
missioned then we cannot move forward to complete the whole event chain calculation 
over all data but have to report the latest result and progress over such a challenging 
research.

4.  Conclusion

As a typical example of space–time interaction, near-repeat phenomenon has significant 
application towards understanding the spatio-temporal patterns of crimes and implement-
ing intelligence-led policing (Ratcliffe, 2016). Given that these concentrations of crime inci-
dents occur in high-crime areas, a series of events would be expected to follow the initiator 
event. To deal with such time-series spatial data in the context of big data, computation 
capability is a must. The results are of interest and significance to police and crime prevention 
specialists to improve policing efficiency and prevent possible follow-up crime incidents 
through directing police activities at finer spatio-temporal scales. Research on repeat and 
near-repeat shooting events will provide practical information on gun violence prevention. 
The analysis will directly guide limited police resources to be prioritized in risky locations 
during risky time periods once a shooting occurs. Nevertheless, the near-repeat test only 
determines whether there are more event-pairs in a close proximity of space and time than 
would be expected on the basis of a random distribution. The challenge is that the linkage 
beyond paired events is ignored in the near-repeat analysis. Space–time chain is defined as 
a series of more than three incidents which significantly cluster in space and time. However, 
it is very computational-intensive to do so. Given the example for a sample data with 30,000 
events, near-repeat calculation and simulation can be a petascale (1015) problem to derive 
all three event chains, or one run of 5-event chain calculation is over exascale (1018). With 
the aid of high-performance computing, space–time based preventive patrol and social 
service towards the most at-risk offenders and places can be much more efficiently imple-
mented by utilizing available resources, though more efficient algorithms with parallel solu-
tions have to be further explored.

Recent advances in geocomputation techniques greatly enhance the abilities of social 
scientists to conduct large-scale data analysis through intensive computation design. Such 
big data analytics will stimulate the development of new computational models. In turn, 
these newly developed methods get adopted in real-world practice, forming a positive feed-
back loop. Enabling such space–time analysis over Cyberinfrastructure is particularly useful 
for projects such as a Smart City (Batty, 2012), where this positive feedback loop will allow 
researchers and practitioners to test their models faster and scale them to a larger data-set, 
therefore producing more policy-relevant results (Wang et al., 2013; Wright & Wang, 2011).

This study has developed a high-performance computing solution to address a challenge 
in large-scale near-repeat calculation. Follow-up studies on other space–time interaction 
such as space–time scan statistics, space–time regression or space–time kernel will be illus-
trated. Setting up permutation of spatio-temporal interaction in parallel is not limited to this 
case study, because the test of spatial and temporal thresholds is common across space–time 
analysis, and its permutation is very computing extensive.
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